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Abstract: Recent advances in machine learning and data science have led to widespread adoption of
complex predictive modelling. Increasing awareness of the ‘reproducibility crisis’ has led to calls for
improved transparency and accountability in scientic reporting. One important aspect of veridical data
science is the robust estimation of prediction error. Availability of computational resources has led to
cross-validation (CV) as a main tool for such estimation. We consider CV estimation in supervised
learning for high-dimensional data, and focus on linear regression and discriminant analysis approaches
based on variable selection with direct dimension reduction as well as lasso-type sparsity criteria. We
highlight how the same description of a method could in fact apply to any one of several different cross-
validation implementations. We outline key principles underpinning good cross-validation practice,
several ‘pitfall’ implementations which subtly violate these principles in different ways as well as a
more complex and computationally intensive implementation which does not. We demonstrate the
differences in the estimated error resulting from these different implementations with real data relating
to endometrial cancer, in the context of high-stakes decision making where accurate and robust estimation
of prediction error is critical. We use simulated data to illustrate how these different implementations
result in estimators for prediction error with very different properties and relationships to the true prediction
error. We call for increased detail in method-reporting, present principles for good practice in the
implementation of cross-validation, and make recommendations to guide cross-validation implementation.
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1. Introduction

Machine learning, and in particular supervised learning, has been growing rapidly in
popularity not only in mathematical and statistical research but more broadly in application
to scientific research. Meanwhile veridical or principled data science has gained in relevance,
particularly in the light of the ‘reproducibility crisis’, see Yu and Kumbier (2020), Baker
(2016), Munafo et al. (2017). One of the key components of veridical data science is the
estimation of predictability, the ability to make accurate predictions for new data. The

Journal of Statistics and Computer Science
Vol. 1, No. 1, 2022, pp. 55-76
© ARF India. All Right Reserved
URL : www.arfjournals.com
https://DOI: 10.47509 /JSCS.2022.v01i01.05



56 Lyron Winderbaum and Inge Koch

empirical rigour with which predictability is quantified in machine learning and specifically
in supervised learning applications is largely made possible by cross-validation (CV), see
Yu and Kumbier (2020). Improper or inaccurate use of CV can alter the resulting
predictability estimate, and various such uses of CV are common in the published scientific
literature, particularly when cross-validation is combined with dimension reduction methods,
see Molinaro et al. (2005), Varma and Simon (2006), Rao et al. (2008). These dangers are
well understood in some circles, yet persist in others, see Rauschenberger and Baeza-Yates
(2020), Guo et al. (2017). Classically cross-validation was performed for data with a
moderate number of variables to estimate the prediction error by dividing the available
data into training and testing and did not include tuning parameters. This process is generally
well understood. We will come back to it at the beginning of Section 3. However, as the
number of variables increases or exceeds the sample size, some form of variable or feature
selection, dimension reduction or sparsity has to be introduced into the supervised learning
process in order to be able to arrive at a solution. If a statistical analysis involves a form of
variable selection as well as estimation of errors and accurate prediction, then care needs
to be taken in how the different components are combined. Various implementations or
combinations are feasible and commonly in use, and are often described by statements like
‘dimension reduction followed by CV was used’. This lack of precision in the description
of the approach affects reproducibility of the results directly and may adversely impact on
the analysis and results.

The aim of this paper is to enhance reproducible and veridical research related to
cross-validation for supervised learning and to improve communication of such research
by clarifying principles underlying CV, by examining the adherence of different approaches
to variable selection combined with CV to these principles, and by making recommendations.
Our research is motivated by the need for accurate prediction of the occurrence of metastasis
in patients diagnosed with endometrial cancer from proteomics mass spectrometry data.
For these high-dimension low sample size (HDLSS) proteomics mass spectrometry data,
early and accurate prediction of the presence or absence of lymph node metastasis (LNM)
is crucial to survival, see Mittal et al. (2016). We provide more detail regarding these data
later in this section and in Section 4.1.

In the supervised learning context we consider four broad scenarios

1. discriminant analysis (DA) with dimension reduction,

2. linear regression (LR) with dimension reduction,

3. linear regression based on the LASSO, and

4. discriminant analysis with LASSO constraints.

Crucial to all these approaches is the selection of the tuning parameter. In the first two
approaches the tuning parameter will refer to the reduced dimension of the data, in the last
two it reflects the degree of sparsity. In this paper we use the term variable selection to
cover explicit dimension reduction, as achieved with principal component analysis and
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other component methods, as well as sparse methods based on the lasso, the ridge idea, or
the elastic net. In many of these variable sections approaches the selected variables are
weighted combinations of the original variables. These are sometimes also called features.

The first two scenarios are commonly used in statistics and its applications, the third
one has also become well established, see Tibshirani (1996), Hastie et al. (2009). For the
possibly lesser known last scenario see Cai and Liu (2011). Our rationale for focussing on
specific, but broad, supervised learning approaches is that we want to facilitate better
communication of results and hence want to explain explicitly how each of these incorporates
the slightly varying implementations of CV which we examine in this paper. The restriction
to the four scenarios listed above does not imply that CV only works for these. Indeed its
range of applicability goes far beyond this list.

In Section 2 we start with a description of the principles underpinning CV which
relate to ‘out-of-sample’ testing and an ‘internal coherence’ in a training/testing and
prediction context. With reference to the four scenarios listed above, we describe, in Section
3, different implementations of CV with variable selection, all of which are used in practice.
We explain how each of these implementations aligns with the CV principles and discuss
the shortcomings as well as decisions and reasoning that would lead to each of these
implementations. In Section 4 we illustrate the impact these decisions have on resulting
predictability estimates with a real example – our motivating proteomic mass spectrometry
imaging data. We complement the real data analysis with simulations based on these data,
which comprise training, testing as well as prediction, and we showcase the performance
as well as the drawbacks of the different implementations. Our final section includes a
discussion of the results and recommendations. Details of the exact implementation of
these methods can be found in the Supplementary Material.

The HDLSS proteomics mass data are from patients diagnosed with endometrial cancer,
see Mittal et al. (2016). They have been measured at the University of South Australia, and
we previously worked with their lab and these specific data, see Winderbaum et al. (2016).
Endometrial cancer is the most common gynaecological malignancy in Australia. The
presence of lymph node metastasis (LNM) is a crucial factor in determining treatment and
prognosis for endometrial cancer patients, however it is difficult to assess LNM status
accurately prior to surgery, see Bendifallah et al. (2012). Current standard practice is to
remove the lymph nodes along with the primary tumour during surgery. For the
approximately 15% of patients with LNM this practice will typically be life-saving, but for
the majority of cases, namely those without LNM, this results in unnecessarily invasive
surgery which carries additional risks. If the LNM status of a patient could be predicted
with suciently low error, prognoses would dramatically improve for patients without LNM
as their lymph nodes would not need to be removed. This is a high-stakes example, and so
a good demonstration of the point that accurate estimation of the prediction error can be
crucial. The data are also high-dimensional, which means that variable selection has to be
carried out as part of the statistical analysis. We provide more detailed information on the
data in Section 4.1.
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We conclude this section with notation used in this paper.

Notation

Let X
i
 denote random vectors in �d with i = 1, 2, ..., n;
� = [X1, X2, ..., Xn

] the set of X
i
 or the d × n data matrix with columns X

k
;

Y = [Y1, Y2, ..., Yn
] the (row) vector of responses which are class labels in DA and

continuous response variables in LR;
�[j] with j = 1, 2, ..., m a partition of � into m disjoint sets;
�[j,i] with fixed j and i = 1, 2, ..., w a partition of �[j] into w disjoint sets for fixed j;
�(0,j) = � \ �[j] the complement of �[j] for each j,
�(0,j,i) = � \ (�[j] � �[j,i]) the complement of �[j] � �[j,i];
Y[j], Y(0,j), Y[j,i] subvectors of Y corresponding to �[j], �(0,j), �[j,i] respectively;
�� variable selection transform applied to the X

i
, with

� = k for dimension reduction, k the dimension of the selected variables;
� = � for the lasso, � controlling the sparsity;
r a classication or linear regression rule assigning (transformed) random vectors to

classes in DA and to a continuous response in LR.
r��0 the classication rule trained on some data �0;
��X��� the l� norm of a vector X with � = 1, 2 and �.
Unless a distinction is necessary we will typically refer to the transform �� and only

refer to the two cases when we want to detail how they differ.

2. Principles of Cross-Validation

In the following, we use the term ‘rule’ to describe a function with parameters determined
by the dataset it is constructed from, and using these parameters, the function is applied to
the same or other data to obtain ‘responses’. In machine learning language the steps of
supervised learning can be categorised as:

• training/learning: constructing a rule by using data to determine its parameters,

• testing: applying a rule to data with known responses, and

• prediction: applying a rule to data with unknown responses.

If we want to distinguish between rules whose parameters are determined from
different subsets of the data, we may do so by referring explicitly to the subset that is
used, so a CV-rule will refer to the rule and the (sub) set from which the parameters are
determined. ‘Full-rule’ will refer to the rule with parameters obtained from all data.
Some authors use the term ‘prediction’ to describe a testing step, but we will exclusively
use ‘prediction’ for the case when the response is not known. So in the proteomics example
this means making a prediction of LNM status for a patient when their true LNM status
is not known. In the construction of new rules, the prediction step is neglected and often
training and testing steps are alternated to optimise performance. Ultimately from the
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application point of view the goal of this optimisation is to arrive at a rule which will
perform well in prediction.

The full-rule is typically used for prediction. For a given dataset the prediction error
Epred in this paper is based on the distribution of the data and on the full-rule trained on the
data it refers to. That is, the parameters of the rule used in Epred are those obtained on the
specific dataset. So Epred is the theoretical error when applying the full-rule to observations
with unknown responses. If two datasets differ, then their corresponding Epred will also
differ even if the data come from the same distribution. Calculation of Epred does require
knowledge of the population distribution, which is typically not the case in practice. The
CV error Ecv is calculated directly from the data without requiring knowledge of the
distribution of the data. It is commonly used as an estimator of Epred. In addition, Ecv may be
employed to determine tuning parameters, and care needs to be taken when Ecv is used in
this latter way. We provide explicit expressions for Ecv in the following sections. Note that
although we will compare different estimators for Epred, doing so on the basis of asymptotic
behaviour is beyond the scope of this work. There has been some work in this direction, see
Kearns and Ron (1999), Zhang (2003), Rao et al. (2008), but it remains a space for further
development.

Although Ecv is an estimator of the unknown population quantity Epred, the parameters
of each of the rules contributing to determine Ecv, the CV-rules, and those of the full-rule
used for prediction may differ. The mechanism by which Ecv estimates Epred is therefore not
through a specific rule, but rather through the process or algorithm a rule’s parameters are
determined from data. The first principle of CV is that the process used to train the CV-rules
in the calculation of Ecv should be the same as the process used to train the full-rule for
prediction. We refer to this idea as ‘internal coherence’. Although this principle is used in
the literature, there does not seem to be a specific terminology for this concept. In the
context of variable selection, this principal implies that the value of the tuning parameter is
part of the training of model-tting process. We will return to this point in more detail.

If the full-rule is used to make predictions for the same data that was used to train it,
this results in the classication error, Eclass. Eclass is a commonly reported and widely used
quantity, and is a useful measure of model fit. However Eclass is typically an underestimate
of the prediction error Epred, particularly with increasing dimensionality of the data. The
second principle of CV, the ‘out-of-sample’ idea, is motivated by correcting this
underestimation. It is a classical idea, used far more broadly than just in CV, and states that
different data should be used to train and test a rule (Lachenbruch and Mickey, 1968;
Stone, 1974, 1978, Efron, 1983). This principle is violated when information about the test
data is (often inadvertently) “leaked” into the training/ model-fitting process. Two common
ways this can happen is through some preprocessing of the data (such as dimension reduction)
prior to CV, or through the criteria used to choose a tuning parameter.

Before we detail CV implementations, we consider the steps in our four scenarios in
light of the different error calculations referred to this section. For scenarios 1 and 2 with
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explicit dimension reduction transformation �
k
 and a chosen dimension k � d the estimation

of the rule includes a separate step which is carried out before the actual rule is applied.
Consider the steps

����k(�) ��r
k
(�

k
(�)), with

k* = argmin E
k
class or argmin E

k
lreg respectively, (1)

where r
k
 is the DA or LR rule induces from r and applied to the k-dimension reduced data

�
k
(�). For scenarios 3 and 4 based on sparsity with the lasso constraint, � > 0, the two steps

shown in (1) are combined into a single step when the parameters of the rule are calculated
for a given value of � and no prior reduction of the variables is carried out, as the shrinkage
is a consequence of the estimation of the rule’s parameters for a given constraint �. For
these scenarios we consider the step

�� r�(�), with

�* = argmin E�
class or argmin E�

lreg respectively. (2)
Here the notation r� is used as a placeholder for r o �� to indicate that a positive value � is
included directly into the formulation of the rule. The ‘how’ is made explicit in the error
calculations of the table below. Unlike the sequence in (1), the rule (2) adds the sparsity
parameter � as a constraint to the rule r. The different error calculations in DA and LR are
listed in Table 1 which refers to the coefficient vector � in the regression setting, to W, the
sum of the class covariance matrices, and �, a sparse solution in DA which approximates

� �1
1 2W X X� � . (Note that W–1 may not exist.) The expression for E�

class in Table 1 is a
reformulation of (3) in Cai and Liu (2011).

Table 1: Regression and Classication Errors for Data with Variable Selection

LR DA

data Elreg = ��Y – �T���2
2 Eclass = ��Y – r(�)��1

dim red Elreg = ��Y – �T�
k
(�)��2

2 E
k
class = ��Y – r(�

k
(�))��1

sparse E�
lreg = ��Y – �T���2

2 + ����||2 E�
class = ��Y – r(��(�))��� + ������1

� �1
1 2W X X�� � �

The process described above has focussed on variable selection and error calculation
for a given tuning parameter, but in the presence of tuning parameters, we require another
step, namely
• the optimisation step which determines the value �* of the tuning parameter.

For predictions, the rule involving variable selection r��� is applied to � and one
optimises the tuning parameter over � which is regarded as training and testing set. As the
resulting error is an underestimate of the true prediction error, we turn to ways of improving
on this estimate using cross-validation.
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3. CV Implementations

Traditionally, that is when there are no tuning parameters to be chosen, m-fold CV is
performed in the following way:
1. choose a partitioning of the dataset � into m disjoint sets �[ j] ( j = 1, 2, ..., m),
2. train a rule, r

j
 = r��(0, j), on each of the m subsets �(0, j) = � \ �[ j];

3. test the rule r
j
 on �[ j]: evaluate r

j
(�[ j]) for each j = 1, 2, ..., m,

4. combine these responses r
j
(�[ j]) and calculate Ecv for the �[ j] using the DA and LR

error criterion respectively.
The CV error Ecv depends on the size and choice of the partitioning subsets �[ j] that are

used in the testing step. In m-fold CV the m classication rules r��(0, j) will differ since they are
constructed on overlapping but different subsets �(0, j) of �. With increasing m the computational
effort increases, but it is generally assumed that the rules r��(0, j) become more similar to r��
as �(0, j) gets closer to �. LOO or n-fold CV refers to the special case for which m = n and
�[ j] = {X

j
} refers to the jth single observation. If computational efficiency is not a concern,

LOO-CV is a natural choice for classication and regression problems because of the intuition
that the rules r��(0, j) will be closer to the rule used for prediction r��. In addition, the partitioning
of the data in LOO-CV is unique and so is simpler to reproduce. We will exclusively use
LOO-CV in our analyses, while keeping our notation general.

Figure 1: Flowchart illustrating, in the dimension reduction setting with 
k
, the calculation of key quantities

represented by green diamonds. In particular, the difference between [Pi1] and [Pi2] is illustrated in the
red rectangles. Notice that E

k,j
cv and Etr

k,j
 are represented twice, and that these two different versions of

each correspond to that calculated using [Pi1] and [Pi2] respectively. The magenta ellipse represents the
population distributions (which are known when dealing with simulated data). Blue circles represent
trained discriminant rules. Arrows A  B can be interpreted as ‘B is calculated from A’. Dashed arrows
such as in particular the small dashed arrow from the training data to the testing data in [Pi1] represents
that the dimension reduction transform 

k
 in 

k
(�

[ j]
) is inherited from 

k
(�

(0, j)
). Note that in [Pi2] there

is no such inheritance of 
k
 as dimension reduction is done prior to splitting the data into subsets, and

this is the essence of the dierence between [Pi1] and [Pi2].
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3.1 CV implementations and Pitfalls

In this section we initially focus on the dimension reduction transform �
k
 rather than on the

more general variable selection. The two choices we put forward also apply to the lasso
though more explicitly at the level at which the rule is calculated, which has direct
implications for the CV error calculations in (8) and (7).

High-dimension low sample (HDLSS) size data typically require dimension reduction
or feature extraction as an integral part of any analysis. The last decade saw rapid advances
in the development of such integrated methods in response to the increased prevalence of
HDLSS across many areas of data science see Filzmoser et al. (2012); Fan and Lv (2010);
Jimenez-Rodriguez et al. (2007). Typically analysis of HDLSS data will involve first
reducing the dimensionality of the data, either by working with a range of dimensions, or
by finding some ‘optimal’ value of the tuning parameter k, and then performing more standard
analysis on the dimension-reduced data. The choice of a single k*, is in fact the selection of
a tuning parameter and should be treated in this way.

We describe four implementations of CV by two decisions annotated [Pi1]/[Pi2] and
[CV1]/[CV2] respectively which essentially offer two options for how the transform �� is
integrated into the CV, and for how �* is chosen respectively.

The [Pi1]/[Pi2] choice is outlined schematically below, highlighting that the difference
between the two is the order in which the partitioning into training sets �(0, j) and the
dimension reduction to k dimensions are accomplished:

[Pi1]

� � �(0, j) ����(�(0, j)); (3)
[Pi2]

� ����(�) ��[��(�)](0, j). (4)
For �

k
 and [Pi1] the data are split into training sets �(0, j) first and then the transformation

�
k
 is applied to each �(0, j). In [Pi2], the transformation �

k
 is applied to the full data �, and

the resulting k-dimensional data �
k
(�) are split into training sets as indicated above by the

subscript (0, j) of [�
k
(�)](0, j). The two sequences typically produce different training sets,

so in general �
k
(�(0, j)) � [�

k
(�)](0, j).

This process is illustrated in Figure 1, specifically by the red rectangles therein. We
first introduce general notation for these training �tr

k, j and testing �
k,j
test sets, and define these

when either [Pi1] or [Pi2] are chosen:

�tr
k,j = 

(0, )

(0, )

( ) if [Pi1] chosen

[ ( )] if [Pi1] chosen

k j

k j

���
� ���

�

� (5)

�
k,j
test = 

[ ]

[ ]

( ) if [Pi2] chosen
.

[ ( )] if [Pi2] chosen

k j

k j

���
� ���

�

� (6)
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When the transform �
k
 is constructed and applied to the same data, i.e. �

k
(�), this

notation is unambiguous. However for [Pi1], the transform �
k
 that is used in �

k
(�[j]) of (6)

is the same as in (5). This inheritance of �
k
 is represented in Figure 1 by the small dashed

arrow between these. Note that there is a similar inheritance of �
k
 in the population case

when the dimension reduction constructed on the sample is applied to the population
distribution in order to calculate the prediction error.

Since [Pi2] with �
k
 uses the full data in the dimension reduction step, it allows for

information about the testing data �[j] to ‘leak’ into the training data �tr
�,j, thereby

contaminating the ‘out-of-sample’ principle. This is probably the most common pitfall
when implementing CV with dimension reduction.

Figure 1 schematically outlines how both Etr
�,j and Ecv

�,j can be calculated using either
[Pi1] or [Pi2]. More precisely these are calculated as:

Etr
k,j

= ��Y(0, j) – r
k, j(�

tr
k,j

)��, (7)

Ecv
k,j = �|Y[ j] – r

k,j
(�

k,j
test)��, (8)

where � = 1 for DA and � = 2 for LR, r
k,j

 = r��tr
k,j

, Y is the vector of known responses, and Y[j],
Y(0,j) are subvectors of Y corresponding to �[j], �(0,j) respectively for each j.

For variable selection based on the lasso, the [Pi1]/[Pi2] split is just as important as in
dimension reduction, however this split becomes apparent or ‘visible’ only in the equivalent
expressions of (7) and (8). In the case of [Pi1],

[Pi1] and LR:

Etr
�,j

= ��Y(0,j) – �T
(0,j)�(0,j)��

2
2 + ����(0,j)��1

Ecv
�,j

= ��Y[j] – �T
(0,j)�[j]��

2
2 + ����(0,j)��1 (9)

DA:

Etr
�,j

= ��Y(0,j) – r(��(�(0,j)
))��� + ����(0,j)��1

Ecv
�,j

= ��Y[j] – r(��(�[ j]))��� + ����(0,j)��1. (10)
The subscript (0, j) used with � and � ‘indicates that these values have been calculated

from �(0,j). Further the DA vector �(0,j) is calculated as in the Table 1, but based on the
relevant quantities of �(0,j).

In the case of [Pi2], the vectors � in LR and ��in DA are obtained from �, so as in
Table 1, and are then applied to Y[j] in the calculation of Ecv

�,j
 resulting in

[Pi2] and LR:

Etr
�,j

= ��Y(0,j) – �T�(0,j)��
2
2 + ������1

Ecv
�,j

= ��Y[ j] – �T�[ j]��
2
2 + ������1 (11)

DA:

Etr
�,j

= ��Y(0,j) – r(��(�(0,j)
))��� + ������1

Ecv
�,j

= ��Y[ j] – r(��(�[ j]))��� + ������1 (12)
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We define [CV1] and [CV2] in the same way for all four scenarios by:
[CV1]

�* = ,min arg min cv
j

j

E�
�

� �
� �� �

�  and (13)

Ecv = * ,

1 cv

j
j

E
n ��  where �* is as in (13), (14)

[CV2]

v*
j
= ,min arg min tr

j
j

E�
�

� �
� �� �

�  and (15)

Ecv = * ,

1 cv

j
j

E
n ��  where v

*
j
  is as in (15). (16)

In [CV1] we obtain a single �* based on �
j
Ecv

k,j
 by (13). The rule r�,j

 in (8) – (12)
contains information from the test data ��,j

test if [Pi2] is used. With [Pi1], each E�,j
cv satises the

‘out-of-sample’ principle as information about the test data is not used to train the rule.
However, E�,j

cv does contain information about the test data, as per (8) – (12). Since selection
of �* is part of training, Ecv (which uses �*) does not satisfy the ‘out-of-sample’ principle
due to this use of test data in the selection of �*.

In [CV2] a different �
j
* is chosen for each of the m sets �[ j] using Etr

�,j
. As long as [Pi1]

is used, Etr
�,j

 does not contain any information about the test data X�,j
test but, unlike [CV1], the

chosen number of dimensions ��
j
 does not contain any information about the test data.

However [CV2] violates the ‘out-of-sample’ principle for a different reason: Etr
�,j

 is calculated
by testing on the same data used to train the rule in (8) – (12) which violates the idea of
testing on data that is ‘out-of-sample’ i.e. data other than the training data.

3.2 Prediction

Ultimately we are interested in prediction, for which we need a single �*. For [CV1], we
use the same �* defined in (13). However since [CV2] calculates m values �

j
*, we use, as

appropriate, the four classication or regression errors which are displayed in the last two
rows of Table 1. We now choose a single value for prediction:

* /min arg min lreg class
�

�
� �� �
� �

�  where ��
lreg/class is as in Table 1, (17)

where �lreg/class is either �lreg or �class as appropriate. Note that (17) is independent of [Pi1]/
[Pi2] since the dimension reduction ��(�) uses the full data �, while (13) will produce
different results for [Pi1] and [Pi2].

The principle of ‘internal coherence’ specifies that the process used to construct the
full-rule from � should be the same as the process used to construct a CV-rule from a
subset �(0,j). In [CV1] the full-rule for prediction is calculated using CV on the full data �.
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If [CV1] were to satisfy the ‘internal coherence’ principle, a CV-rule would be calculated
using CV on a subset �(0,j). The fact that [CV1] does not do this, and, instead, uses �[ j] in
the choice of v* for the CV-rules not only violates the ‘out-of-sample’ principle, but also
violates the ‘internal coherence’ principle.

At first glance [CV2] seems to satisfy the ‘internal coherence’ principle. However, since
v* is calculated from � in (17) using the dimension reduction ��(�), in order to satisfy the
‘internal coherence’ principle, v

j
* would need to be calculated from �(0, j) in (15) using the

dimension reduction ��(�(0,j)). When [Pi1] is used, this is the case and the ‘internal coherence’
principle is satised, however when [Pi2] is used the dimension reduction [��(�)](0,j) is used
instead and so [Pi2]-[CV2] does not satisfy the ‘internal coherence’ principle.

In summary: In the choice between [Pi1][/Pi2], the choice [Pi1] is the preferred option,
in particular for the lasso-based solutions. And of the four implementations discussed so
far [Pi1]-[CV2] is the only one that satises the ‘internal coherence’ principle, and although
each rule trained and tested in the process of calculating Ecv with [Pi1]-[CV2] preserves the
‘out-of-sample’ principle, the criterion [CV2] used to choose v* does not, as it involves
training and testing on the same data. In the next section we address this remaining issue.

3.3 Double CV

Filzmoser et al. (2009) proposed a ‘repeated double CV’ based on Stone (1974) for a
partial least square setting with applications to chemometrics. We extend their ideas to the
four scenarios in classication and regression listed in the introduction and complement
their empirical workflow with the more formal setting based on the ideas of reproducibility
and adherence to CV principles. As mentioned at the end of the previous section, [Pi1] is
the more appropriate of the two versions. It remains to adapt the CV-version, which we do
below and we refer to this Double CV (D-CV) approach by [Pi1]-[CV3].

D-CV extends the [Pi1] implementations by nesting a second CV-partitioning within
the first as follows.

Outer Inner
(0, ) (0, , )loop loop

.j j i���� ����� � �

The outer first partitioning remains the same as previously discussed: the �[ j] partition
� into m sets. The inner second partitioning of each �(0,j) we denote by �[ j,i]. It partitions
�(0,j) into m sets, unless LOO is used both times. We let �(0,j,i) = � \ (�[ j] � �[ j,i]) be the
complement of �[ j,i] within �(0,j).

Analogous to the calculations in Section 3.1, we calculate CV errors Ecv
�,j,i

 for the
responses Y[ j,i] corresponding to the partition �[ j,i] in the inner loops by

[ , ] , , [ , ]

2

, , [ , ] , , [ , ] (0, , )2 1

[ , ] [ , ] (0, , ) 1

( ( )) for dimension reduction

for LR and lasso, ,

( ( )) for DA and lasso,

X

X

X

� � �

� �

� �

� � �
�
�

� �� � � � � � ��
�

� � � � � � � ���

r

r

j i j i j i

cv T
j i j i j i j i j i

j i j i j i

Y

E Y

Y
(18)
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where � = 1 or 2 corresponding to DA and LR, and with the adjusted subscript notation for
the vectors � and �.

Next we define the new CV implementation based on (18) by:
[CV3]

�
j
* = , ,min arg min cv

j i
i

�
�

� �
� �� �

��  and (19)

Ecv = * ,

1
j

cv

j
jn ��� , where �

j
* is as in (19). (20)

The inner second partitioning �[ j,i] is used in (19) to obtain a value �
j
* for each �(0,j).

Equipped with these �
j
* we return to the outer first partition and calculate ,j

cv
j��  separately

for the three cases as done in (8) to (10), at the corresponding value �
j
 = �

j
*. Using the

expressions * ,j

cv

j�
�  yields (20).

The Ecv in (20) is similar to (16) but chooses �
j
* in a different way, namely as in (19).

By this choice, Ecv does not test and train on the same data at any stage. By using a second,
nested or inner, partitioning to calculate Ecv

�,j,i
, we ensure that each �

j
*, when chosen as in

(19), does not contain any information about �[ j], and so Ecv of (20) does satisfy the ‘out-
of-sample’ principle, unlike the Ecv of (14).

For prediction, [CV3] uses only the first partitioning and not the second to calculate
�*as in (13) i.e. [Pi1]-[CV1]. Unlike [CV1], in [CV3] the number of dimensions chosen for
prediction is different to that used in the calculation of Ecv. This difference allows for
[CV3] to satisfy the ‘internal coherence’ principle (which [CV1] did not satisfy). Specifically
for prediction [CV3] uses �* which is calculated from �(0,j) as per (15), while in the calculation
of Ecv, �*

j
 is calculated in the same way, but from �(0,j,i) (as per (19)) instead of �(0,j). So

[Pi1]-[CV3] or D-CV is the implementation which satises both principles of CV.

4. Applications to Data

We focus on one specific application – our motivating proteomics mass spectrometry imaging
(MSI) data from subjects with endometrial cancer. These HDLSS data arise from two classes.
We consider dimension reduction transforms for these data, so focus on the first scenario
listed in Section 1. Within this scenario we do not restrict the dimension reduction transform
to the common principal component analysis (PCA), but also include a canonical correlation
analysis (CCA) based dimension reduction. This is done partly to familiarise readers with
this approach which is often more powerful than the PCA-based reduction and partly to
provide comparisons.

4.1 Proteomics Data

We begin with a brief description of the proteomics MSI data which is based on Winderbaum
et al. (2015, 2016) and references therein. A recent development, matrix assisted laser
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desorption ionization (MALDI), which is applicable to the characterisation of tissue sections
and enables the quantication and spatial expression profiling of thousands of peptides, the
building stones of proteins, within and between tissues, was used to acquire mass
spectrometry profiles from tissue sections of patients. MALDI-MSI became part of the
routine research practice in proteomics labs in the early years of this century, however, it
took some time before its potential in the discovery of new drugs and cancer biomarkers
was proved, and good and efficient computational methods for MALDI-MSI are still being
researched and are currently still lagging behind the success of the method in the laboratory.

For the data we consider in this analysis, a pathologist annotated the tumour regions in
two tissue samples of patients with endometrial cancer. MALDI-MSI data were acquired
in the annotated regions in the mass range of 800-4000 Da in the lab at the University of
South Australia where the first author was a research associate at the time of the data
collection. Since mass is a continuous variable, we are dealing with functional data. In
practice, however, the spectra or profiles are observed at discrete mass values which may
vary from patient to patient. We applied preprocessing steps including baseline subtraction
and peak-picking to the data. In the next step we binned the spectra into bins of width 0.25
Da and only included those bins in the analysis that contained at least one peak. This step
created the same bins for all patients and further reduced the number of masses (about
170K) of the original data dramatically – here to 4582 variables. In this analysis, we regard
the mass bins as the variables. For each patient we averaged the spectra leading to
(proteomics) MSI data that consist of 4582 mass variables, the dimension of the input data,
for each of n = 43 patients with endometrial cancer, 16 of these patients are LNM positive,
and the remaining 27 are LNM negative.

The aim in the classication of the LNM status of patients with endometrial cancer is to
determine the mass variables that are most strongly related to discriminating between the
LNM positive and LNM negative patients. We typically also want to rank these variables
by their ability to discriminate or effectiveness in achieving good discrimination between
the two groups, and finally one wants to relate the masses to biomarkers that are responsible
for the onset of LNM.

The primary aim of the analysis presented in this paper is to compare different
approaches, including their performance in determining a list of discriminating masses. A
closer inspection of such a list and the link of the masses to potential biomarkers is beyond
the scope of this research, but has been considered in Mittal et al. (2016).

Below we describe and interpret the performance of the different CV implementations
we presented in Section 3 using the notation we introduced there.

Table 2 shows the CV errors Ecv and the optimal number of dimensions k* for each of
the five different CV implementations resulting from choosing [Pi1] or [Pi2] and [CV1] or
[CV2]. These calculations are repeated using PCA or CCA for dimension reduction.
References providing precise details for these dimension reduction methods are provided
in the supporting information.



68 Lyron Winderbaum and Inge Koch

Table 2: CV error Ecv and associated ‘optimal’ number of dimensions k* using each of the five different CV
implementations, with both PCA and CCA, on the proteomics data.

[CV2] [CV1] [CV3]

[Pi1] [Pi2] [Pi1] [Pi2] [Pi1]

Ecv CCA 0.47 0.16 0.26 0.14 0.30

PCA 0.44 0.44 0.33 0.21 0.35

k* CCA 24-38 12-18 15 16 3-38

PCA 22-35 23-33 4 35 4-35

Note that in all cases, values of k considered were restricted to the range 2-38. For
[CV2] and [CV3] multiple k* (i.e. k

j
* ) values are calculated for each value of Ecv, while for

[CV1] a single k* value is calculated. In Table 2, the range of k
j
* values is reported (min-max)

for [CV2] and [CV3] while for [CV1] the k* values themselves are reported.
In terms of effectiveness of the performance of the different CV implementations, we

observe that, in 4 of the 5 cases, dimension reduction with CCA works better than dimension
reduction based on PCA. More parsimonious models, which are characterised by smaller
k* values, however, do not always result in implementations with small CV errors. In the
Discussion Section we focus more explicitly on an interpretation of the different
implementations with respect to adherence to the internal coherence and out-of-sample
principles of these implementations.

Simulated Data

We simulate datasets from two multivariate normal distributions with class means and
covariance matrices equal to the sample means and sample covariance matrices of the two
LNM classes of the endometrial cancer data. We sample a number of observations from
each distribution equal to the number of observations in each LNM class in the real data:
27 for the LNM negative class and 16 for the LNM positive class. We simulate 200 such
datasets.

For each simulated dataset, we repeat the calculation of Ecv as above for Table 2.
Additionally, knowing the exact distributions allows the prediction errors Epred to be
calculated. A more detailed description of the calculation of Epred is presented in the
supporting information appendix. The simulations allow us to directly compare our estimated
predictability to the true predictability, see Figure 2.

The calculations and graphs in Figure 2 show that Ecv is smaller for PCA than for CCA
when [CV1] and [CV3] are used (rows 1, 2 and 5), and it agrees better with Epred in each of
these cases. In contrast, both Ecv and Epred are smaller in the presence of [CV2] (rows 3 and
4) . We will examine these observations further in the discussion, and suggest reasons for
this behaviour. We will also look at the performance measures and relate it to the
implementation’s adherence to the ‘out-of-sample’ and ‘internal coherence’ principles.
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Discussion

[Pi2] allows information about the test data to leak into the training data through the variable
selection step, contaminating the ‘out-of-sample’ principle, while [Pi1] preserves the ‘out-of-
sample’ principle. This contamination arising from [Pi2] is reflected in both real and
simulated results by smaller values of Ecv. As expected this effect is substantially more
pronounced when CCA is used as CCA incorporates information about the predictor as
well as the response variables into the dimension reduction. Although much smaller than
that for CCA, a similar effect is observable when using PCA. Since PCA does not use
information about the response variable this effect may seem surprising, but it has been
shown and discussed previously Smialowski et al. (2010).

[CV1] violates the ‘internal coherence’ principle, while [CV2] satises it, at least when
applied in combination with [Pi1]. This indicates that [Pi1]-[CV2] should be a good candidate
for satisfying both the ‘out-of-sample’ and ‘internal coherence’ principles and although it

Figure 2: Histograms for 200 simulated samples: CV errors Ecv (left column), prediction errors Epred

(right column), and paired differences Ecv – Epred (centre column) for each of the four combinations of
[Pi1] (rows 2 and 4) or [Pi2] (rows 1 and 3) with [CV1] (rows 1 and 2) or [CV2] (rows 3 and 4), as

well as for [CV3] (row 5) for both PCA (blue) and CCA (red).
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satisfies the latter, [CV2] violates the ‘out-of-sample’ principle. More specifically, [CV2]
minimises criteria that test and train on the same data (Eclass and Etr) in order to choose the
tuning parameter �*. Such criteria tend to act as optimistic estimators of Epred. As a
consequence, if the objective in choosing v* is to minimise Epred, this choice may not be
optimal. In contrast, [CV1] and [CV3] minimise criteria based on ‘out-of-sample’ testing
(using E

j
cv) in order to choose v*, which tend to be better estimators of Epred. Consequently

[CV1] and [CV3] will tend to achieve better Epred, since their approach to selecting �* is
based on optimising better estimates of Epred. The results of the simulations strongly support
this conclusion, with [CV1] and [CV3] achieving substantially better Epred than [CV2].

[CV3] preserves both the ‘out-of-sample’ and ‘internal coherence’ principles, while
optimising Ecv when choosing v* thereby staying consistent with the ‘out-of-sample’ principle
and also when selecting �*. In the simulated data, this results in Epred comparable to that of
[CV2], but with more accurate (or at least more conservative, in the case of CCA) estimation
of predictability by Ecv.

Conclusions and Recommendations

The principles of CV are well understood across scientific communities. This understanding
is a possible reason why these approaches are often taken for granted, and the required care
is not taken when considering how to apply these principles to increasingly complex
problems, particularly those involving preprocessing and variable selection or dimension
reduction steps that require the choice of tuning parameters. We have presented five
implementations of CV – four are commonly used implementations of CV to these kinds of
problems. These four have been recognised to be problematic in the statistics community,
while the fifth implementation, which is discussed in the regression context in Filzmoser et
al. (2009), addresses these problems through a more complex double CV setting. Analyses
of real high-dimension low sample size data from proteomics mass spectrometry imaging
of patients with endometrial cancer and of derived simulated data show that these five CV
implementations result in widely different errors for CV and prediction.

We suggest that users be guided not only by the size of the error, as expressed by Ecv

and, in simulations, by Epred as well, but to consider the performance measure of a CV
implementation in connection with its adherence to the principles that are satisfied. In
particular, a small Ecv should not be the only criterion for deciding which approach to use.

We make two recommendations relating to CV implementations and performance.
First, since all five CV implementations which we presented would generally all be
described by the same phrase in the methods section of a scientific paper (something to
the effect of ‘CV was used to estimate the prediction error of a LDA classifier trained on
data that has been dimension-reduced by PCA/CCA’ and analogously for regression), we
emphasise the importance of reproducible reporting of methods used – by detailed
description of the implementation used, and the inclusion of code reproducing the analysis.
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This more detailed reporting is critical for results to be compared to one another in a
valid way. Second, we recommend readers consider how to implement CV at each stage:
at the preprocessing stage of data, and each time a tuning parameter is chosen. We have
included and recommend use of a double CV approach, but as the results show no approach
is perfect and it is important to be aware of the limitations of the chosen approach when
interpreting results.
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Computational Details

The results in this paper were obtained on x86 64-pc-linux-gnu (64-bit) with Ubuntu
18.04.3 LTS and R 3.6.2 as well as the following R packages: base and stats, R, MASS,
Ripley 2002, geigen geigen, and plyr. Additionally, ggplot2 was used to produce the
figures. All packages used are available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/. All data and code required to reproduce the
results in this paper are available at https://zenodo.org/badge/latestdoi/235052456 in the
form of R scripts.

Methodological Details

In this section we provide more detailed and explicit descriptions of the methods used in
the various calculations presented in the main text.

LDA

We originally considered using the standard R function lda() from the standard MASS
package but its non-deterministic behaviour when making predictions (specifically in
MASS:::predict.lda()) for new data near the decision boundary is not ideal for reproducibility
purposes, even though it can be made to be reproducible using set.seed(). So we use our
own deterministic implementation train_lda() instead. The code for this function can be
found in the housekeeping_functions. R script at https://zenodo.org/badge/latestdoi/
235052456. What follows is a detailed description of that implementation. We split the
data set � into the n1 observations in class 1, which we denote �1, and those n2 observations
in class 2 (so n1 + n2 = n), which we denote �2, with respective sample means 1X  and 2X .
We will train a classication rule by calculating ��� �d and m � �. We treat �1 and �2 as d
× n1 and d × n2 matrices respectively, and hence 1X  and 2X  as column vectors. We denote

the d × 2 matrix with 1X  and 2X  as columns �. Note that when we write addition or

subtraction between a matrix and vector such as �1 – 1X  we mean the obvious thing: to

subtract 1X  from each observation in �1. First,
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we calculate
B = * *( ) ( )TX X� �� �  and (1)

W = 1 1 1 1 2 2 2 2
1 2

1 1
( ) ( ) ( ) ( ),

1 1
T TX X X X

n n
� � � � �

� �
� � � � (2)

where 
*

1 2

1
( )

2
X X X� � . Then, we estimate the eigendecomposition of the symmetric

matrix W

W = �T�� (3)
where � is the d × d diagonal matrix of eigenvalues �1 � �2  ... ���d

 and � is the d × d matrix
with the corresponding eigenvectors �1, �2, ..., �d

 as columns and both � and ��are numerically
estimated using the function eigen() from the standard base package Core Team (2019).
We estimate the rank r of W as the number of �

i
 � 10–14 as below this is close to double

precision. Then, if W has full rank r = d, we solve the generalised eigenvalue problem

B� = �W� (4)
directly using the geigen() function from the geigen package Hasselman and authors (2019)
and take � to be the solution for � corresponding to the largest eigenvalue �. Otherwise, if
we estimate W to have rank r < d, we calculate

W = �
r
T�

r
–1�

r
(5)

where �
r
 is the r × r diagonal matrix of eigenvalues �1 ���2 � ... ���

r
 and �

r
 is the d × r

matrix with the corresponding eigenvectors �1, �2, ..., �r
. We then take � to be the (right)

eigenvector corresponding to the largest eigenvalue in the eigendecomposition of the matrix
W*B calculated using eigen, i.e. solution to the standard eigenvalue problem

W*B� = ��. (6)
Either way, we now have a vector � although it is only specfiied up to sign, and as

such we multiply it by –1 as necessary so that �T
1X  > �T

2X . Then we calculate

*
1 2

1
( ) ( ),

2
T Tm X X X� � � � � (7)

and we are done. Training an LDA classication rule essentially constitutes calculating a
pair (�, m). The resulting classication rule r (with parameters � and m) assigns a class to a
new observation x as follows:

1 if 
( )

2 if .

T

T

x m
x

x m

� � �
� �

� ��
r (8)

PCA and CCA

We use two contrasting dimension reduction transforms for illustration and comparison.
Probably the most common dimension reduction transform is PCA – see Chapter 2 of
Koch (2013), which uses the sample covariance matrix and finds the directions which
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maximise variability. PCA does not take into account information regarding the class
membership of the observations, and as a consequence PCA directions may not include
directions which separate the classes best. In the data analysis we use the R function prcomp
in the stats package Core Team (2019) to carry out PCA without scaling.

The other dimension reduction transform we use is based on CCA and ranks the
variables of the data by exploiting the relationship between the data and the vector of class
labels, Y. Define a ranking of the original variables of X by the order of absolute values of
entries in a ranking vector starting with the largest value. The CCA-based dimension
reduction transform �

k
 selects the first k of the original variables in this ranking. The version

we use is a modification of the approach of Tamatani et al. (2012) – for more details see
(Koch, 2013, Sections 3.2, 4.8 and 13.3), and for a specific derivation of the ‘ranking
vector’ we use see Winderbaum et al. (2016).

Calculation of Epred

For an LDA classication rule r with �, m as described above in this document, we calculate
the true prediction error Epred as follows. Our simulations come from a population that
consists of a mixture of two multivariate normal distributions, X+ ~ �(�+, �+) and X– ~

�(�–, �–) with a probability of being from X+ of 
16

43
 and a probability of being from X– of

27

43
. That is, if we let Y denote a random new observation drawn from this distribution,

P(Y � X +) = 
16

43
 and

P(Y � X –) = 
27

43
.

Note that in reality each sample of data is fixed to this exact ratio and not actually
sampled from a binomial class distribution, but we claim this would be the distribution
from which a new observation would be drawn – i.e. for prediction. We calculate

Epred = P((r(Y) = 1) � (Y � X–)) + P((r(Y) = 2) � (Y � X +))

= P(Y � X –)P(r(Y) = 1|Y � X–) + P(Y � X+)P(r(Y) = 2|Y � X+)

27 16
( ( ) 1 ) ( ( ) 2 )

43 43
P Y Y X P Y Y X� �� � � � � �r r

in practice, this is calculated in terms of univariate normal distributions as

27 16
( ~ ( , )) ( ~ ( , )).

43 43
pred T T T T T TE P Y m Y P Y m Y� � � � � �� � � � � � � � � � � � � � � � � �� �
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More CV Alternatives

We discussed [CV1], [CV2], and [CV3] as different options for choosing the ‘optimal’
number of dimensions. These are by no means the only options, they are simply intuitive,
commonly used, and made for good discussion. Another method is one that essentially
combines ideas from [CV1] and [CV2]: choosing a different number of dimensions for
each j as in [CV2] but the preserving the ‘out-of-sample’ testing idea from [CV1] and
instead choosing:

k
j
* = min[argmin E

k,j
cv  for each j = 1, 2, ..., m, (9)

where the argmin is taken over k. This is reasonable if m � n, but in the LOO case this
bases each decision on a single test observation, which could be noisy. Another approach
would be to choose a k* apriori. This is perhaps the most commonly used argument, as it is
simple and easy to understand, and treats k* as a constant rather than as a tuning parameter.

References

Core Team, R. (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria:
R Foundation for Statistical Computing.

Hasselman, B. and L. authors (2019). geigen: Calculate Generalized Eigenvalues, the Generalized
Schur Decomposition and the Generalized Singular Value Decomposition of a Matrix Pair
with Lapack. R package version 2.3.

Koch, I. (2013). Analysis of Multivariate and High-Dimensional Data, Volume 32 of Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press.

Tamatani, M., I. Koch, and K. Naito (2012). Pattern recognition based on canonical correlations in
a high dimension low sample size context. Journal of Multivariate Analysis 111, 350-367.

Winderbaum, L., I. Koch, P. Mittal, and P. Homann (2016). Classification of MALDI-MS imaging
data of tissue microarrays using canonical correlation analysis-based variable selection.
Proteomics 16 (11-12).


	5
	5A

